Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            In 2022, 3 years after the initial 5G rollout, through a cross-country US driving trip (from Los Angeles to Boston), the authors of [28] conducted an in-depth measurement study of user-perceived experience (network coverage, performance, and QoE of a set of major 5G “killer” apps) over all three major US carriers. The study revealed disappointingly low 5G coverage and suboptimal network performance – falling short of the expectations needed to support the new generation of 5G "killer apps. Now, five years into the 5G era, widely considered its midlife, 5G networks are expected to deliver stable and mature performance. In this work, we replicate the 2022 study along the same coast-to-coast route, evaluating the current state of cellular coverage and network and application performance across all three major US operators. While we observe a substantial increase in 5G coverage and a corresponding boost in network performance, two out of three operators still exhibit less than 50% 5G coverage along the driving route even five years after the initial 5G rollout. We expand the scope of the previous work by analyzing key lower-layer KPIs that directly influence the network performance. Finally, we introduce a head-to-head comparison with Starlink’s LEO satellite network to assess whether emerging non-terrestrial networks (NTNs) can complement the terrestrial cellular infrastructure in the next generation of wireless connectivity.more » « lessFree, publicly-accessible full text available July 28, 2026
- 
            Networking research has witnessed a renaissance from exploring the seemingly unlimited predictive power of machine learning (ML) models. One such promising direction is throughput prediction – accurately predicting the network bandwidth or achievable throughput of a client in real time using ML models can enable a wide variety of network applications to proactively adapt their behavior to the changing network dynamics to potentially achieve significantly improved QoE. Motivated by the key role of newer generations of cellular networks in supporting the new generation of latency-critical applications such as AR/MR, in this work, we focus on accurate throughput prediction in cellular networks at fine time-scales, e.g., in the order of 100 ms. Through a 4-day, 1000+ km driving trip, we collect a dataset of fine-grained throughput measurements under driving across all three major US operators. Using the collected dataset, we conduct the first feasibility study of predicting fine-grained application throughput in real-world cellular networks with mixed LTE/5G technologies. Our analysis shows that popular ML models previously claimed to predict well for various wireless networks scenarios (e.g., WiFi or singletechnology network such as LTE only) do not predict well under app-centric metrics such as ARE95 and PARE10. Further, we uncover the root cause for the poor prediction accuracy of ML models as the inherent conflicting sample sequences in the fine-grained cellular network throughput data.more » « less
- 
            Networking research has witnessed a renaissance from exploring the seemingly unlimited predictive power of machine learning (ML) models. One such promising direction is throughput prediction – accurately predicting the network bandwidth or achievable throughput of a client in real time using ML models can enable a wide variety of network applications to proactively adapt their behavior to the changing network dynamics to potentially achieve significantly improved QoE. Motivated by the key role of newer generations of cellular networks in supporting the new generation of latency-critical applications such as AR/MR, in this work, we focus on accurate throughput prediction in cellular networks at fine time-scales, e.g., in the order of 100 ms. Through a 4-day, 1000+ km driving trip, we collect a dataset of fine-grained throughput measurements under driving across all three major US operators. Using the collected dataset, we conduct the first feasibility study of predicting fine-grained application throughput in real-world cellular networks with mixed LTE/5G technologies. Our analysis shows that popular ML models previously claimed to predict well for various wireless networks scenarios (e.g., WiFi or singletechnology network such as LTE only) do not predict well under app-centric metrics such as ARE95 and PARE10. Further, we uncover the root cause for the poor prediction accuracy of ML models as the inherent conflicting sample sequences in the finegrained cellular network throughput data.more » « less
- 
            Background The mechanical rupture of an atheroma cap may initiate a thrombus formation, followed by an acute coronary event and death. Several morphology and tissue composition factors have been identified to play a role on the mechanical stability of an atheroma, including cap thickness, lipid core stiffness, remodeling index, and blood pressure. More recently, the presence of microcalcifications (μCalcs) in the atheroma cap has been demonstrated, but their combined effect with other vulnerability factors has not been fully investigated. Materials and methods We performed numerical simulations on 3D idealized lesions and a microCT-derived human coronary atheroma, to quantitatively analyze the atheroma cap rupture. From the predicted cap stresses, we defined a biomechanics-based vulnerability index (VI) to classify the impact of each risk factor on plaque stability, and developed a predictive model based on their synergistic effect. Results Plaques with low remodeling index and soft lipid cores exhibit higher VI and can shift the location of maximal wall stresses. The VI exponentially rises as the cap becomes thinner, while the presence of a μCalc causes an additional 2.5-fold increase in vulnerability for a spherical inclusion. The human coronary atheroma model had a stable phenotype, but it was transformed into a vulnerable plaque after introducing a single spherical μCalc in its cap. Overall, cap thickness and μCalcs are the two most influential factors of mechanical rupture risk. Conclusions Our findings provide supporting evidence that high risk lesions are non-obstructive plaques with softer (lipid-rich) cores and a thin cap with μCalcs. However, stable plaques may still rupture in the presence of μCalcs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available